bynavitz

A1快速使用指南

Quick Start Guide

连接方式

- ① 将GNSS天线置于无遮挡的环境中,然后使用射频线缆连接A1和天线
- ② 使用一分二或一分四串口线连接COMM1、COMM2和电脑
- ③ A1连接电源并通电,检查A1电源指示灯是否常亮

编号	名称	状态	备注
1	ARM	绿灯闪	ARM模块正常工作时,连续闪烁,不工作时熄灭
2	ANT1	绿灯闪	ANT1接收模块正常工作时,连续闪烁,不工作时熄灭
3	ANT2	绿灯闪	ANT2接收模块正常工作时,连续闪烁,不工作时熄灭(单天线模式长灭)

设备通信

1.确认A1对应的电脑端口,然后可以使用任何串口通信软件与A1的串口建立通信。 bynav

2.A1的默认串口配置为:

- 波特率: 115200, 无校验位, 8bit数据位, 1bit停止位
- COM3接口协议: IN:BYNAV OUT:BYNAV, COM2接口协议: IN:RTCM OUT:RTCM

输出定位结果

1.为了使A1能够输出定位结果,需要向A1发送如下指令:

- LOG COM3 BESTPOSA ONTIME 1 #使COM3输出BESTPOSA语句
- SAVECONFIG #保存配置

2.此时A1定位状态为单点解(伪距差分)

3.如果需要提升定位精度,则应接入差分数据使用RTK定位模式。

有关基站搭建和建立数据链路等内容可以参考<u>《UGO</u>17 C1 用户手册》

组合导航功能

1.如果需要使用组合导航相关功能,则必须精确测量并配置A1到双天线的杆臂值。

- 杆臂值是指天线在车体坐标系中相对于整机导航中心的位置
- 可以利用全站仪等专业设备精确测量杆臂值
- ynav • 我们的Connect软件提供了专业的byoffset模块来提供帮助,其精度通常可达厘米级

-,						
天統位置(1861系) 華	粒 本					
1801:东	- *	天	使透镜入	0,0,0	输入	
ANT2: 东	*	×	使温暖入	. 0.0.0	\$ 3A	bynav
销 购天线:东	北	¥	使運輸入	; 0.0.0	\$ 12	
辅助天线(1)盔机系): x x	3	一般医输入	; 0,0,0	输入	$\lambda \sim 1$
□×:安吉(mu系):	Rell		,	Pitch	R	- m
天线皮装方式						
● ANT:在后	○■町1在間	() A2	に在左	○副町1在右	清空	
加支援方式				0	计算	y y
® 1999.00	○開始結局	0.18	親在	ाधकाय		
计算结果(军体系)						
ABC1 : X		1		z	*	
AME2 : X		:		z	*	Ŷ
109: X		1		z	E C	(1)
政策指令						×X
ARC1 :						
ANT2						
18V :						

2.如果A1安装在了车辆上,可以通过RBV校准来减少A1安装过程中引入的误差

- RBV是整机坐标系到车体坐标系的旋转欧拉角
- RBV校准的流程简述如下:
- ① 确认A1已正确配置精确的双天线杆臂值和大致的RBV
- ② 输入指令 INSCALIBRATE RBV NEW 进行校准
- ③ 输入指令 LOG COM1 INSCALSTATUSA ONCHANGED 报告当前校准过程的状态和估计值
- ④ 尽可能地使车辆在水平地面上沿直线行驶,以此来更快地实现校准,并能避免引入额外的估算误差
- ⑤ 当状态显示为 CALIBRATED 时校准完成, RBV的估计值会自动配置, 输入指令 SAVECONFIG 保存配置

○ 停止 ● 调试 ○ 数据 ○ 网络 LOG COM1 INSCALSTATUSA ONCHANGED 发送 #INSCALSTATUSA, COM1, 0, 80. 0, FINESTEERING, 1880, 317815.012, 02000000, a4f2, 32768; RBV, 0. 3310, -0. 2570, -1. 5140, 0. 83600, 0. 7340, 1. 4260, CALIBRATED, 1*4ECC1008

3.您可以参考《UG015 A1 用户手册》来获取有关杆臂值和RBV校准的详细说明

HUNAN BYNAV TECHNOLOGY CO., LTD

www.bynav.com

电话: 073-85058117 邮箱: sales@bynav.com