Integrated Navigation System X1

No.: UG008 Level: Public Version: 2019.11

Protoco

CAN Protocol

INTRODUCTION

This document introduces the commands and logs for CAN Bus configuration in Bynav X1 GNSS/INS integrated navigation system.

www.bynav.com

Content

1 Introduction	1
1.1 Terminology	1
1.1.1 CAN	1
1.1.2 SAE J1939	1
1.1.3 RTCM	
1.2 List of Abbreviations	
1.3 Open System Interconnection (OSI)	1
1.4 CAN 2.0B	
1.5 J1939 Message Format	
2 Commands and Messages	6
2 Commands and Messages	
2.1 Commands	
2.1 Commands	
2.1 Commands	
2.1 Commands 2.1.1 J1939CONFIG 2.1.2 CANCONFIG 2.1.3 CCOMCONFIG	
2.1 Commands 2.1.1 J1939CONFIG 2.1.2 CANCONFIG 2.1.3 CCOMCONFIG 2.2 Logs	

1 Introduction

1.1 Terminology

1.1.1 CAN

The Controller Area Network was developed by Robert Bosch GmbH for automotive applications in the early 1980s and publicly released in 1986. Typically, CAN interconnects a network of modules (or nodes) using two wire, twisted pair cable. Many companies implement CAN devices.

1.1.2 SAE J1939

SAE J1939 is the vehicle bus standard used for communication and diagnostics among vehicle components, originally by the car and heavy duty truck industry in the United States.

1.1.3 RTCM

The RTCM standard series describes messages and techniques for supporting Differential GNSS Service operation with one reference station or a network of reference stations.

1.2 List of Abbreviations

CAN	Controller Area Network
GNSS	Global Navigation Satellite System
OSI	Open System Interconnection
PGN	Page Group Number
RTCM	Radio Technical Commission for Maritime Services
RTK	Real-Time Kinematic
SAE	Society of Automotive Engineers

1.3 Open System Interconnection (OSI)

It should be obvious that if two or more microprocessors are to communicate, a standard protocol must exist defining how data are to be transmitted among cooperating devices. The most

common protocol is TCP/IP (Transmission Control Protocol/Internet Protocol), which is used to connect hosts on the Internet.

The OSI protocol is sometimes referred to as the "7-layer" model because it consists of seven independent elements that describe the requirements forcommunication at different levels of abstraction. The seven layers are:

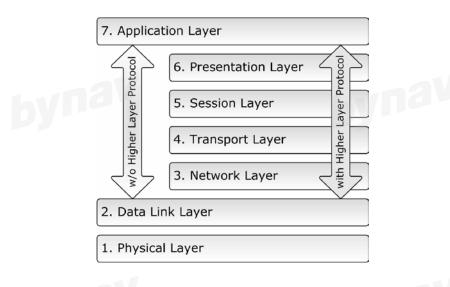


Figure 1-1 ISO/OSI 7-Layer Reference Model

Application Layer: The application layer specifies how application programs access the network. Examples include email, file transfer, remote terminal access and web browsers.

Presentation Layer: The presentation layer defines things like data compression and encryption.

Session Layer: The session layer establishes, manages and terminates the connections between cooperating applications.

Transport Layer: The transport layer provides transfer of data between users and addresses issues of error control and security.

Network Layer: The network layer performs network routing functions.

Data Link Layer: The data link layer provides synchronization and error control.

Physical Layer: The physical layer defines the physical specifications for devices on the network, including connectors, cables and electrical specifications like voltage levels.

bynav 1.4 CAN 2.0B

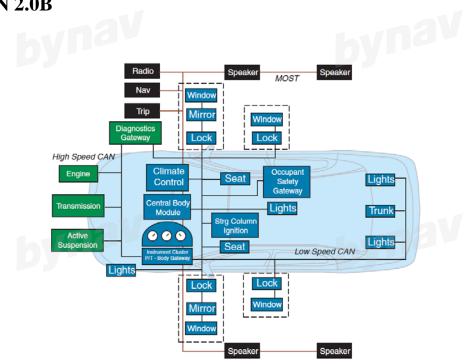
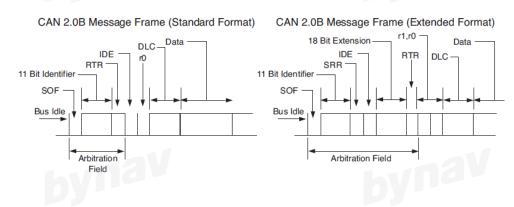



Figure 1-2 Typical Automotive Networks

The most commonly used network for control in automotive and manufacturing applications is the Controller Area Network, or CAN. The CAN protocol(here refers to **CAN 2.0B**) specifies rules for implementing the physical and data link layers of the OSI model in silicon to effect serial transfer of information between two or more devices. The layers above the Data Link Layer are covered by additional software, which represents per definition a higher layer protocol (here refers to **J1939**).

Bynav X1 supports CAN 2.0B message format. CAN 2.0B specifies rules for implementing the physical and data link layers of the OSI model.

Figure 1-3 CAN Message Formats

The CAN data frame is composed of seven fields: Start of frame (SOF), arbitration, control, data, and cyclical redundancy check (CRC), acknowledge (ACK) and end of frame (EOF). CAN message bits are referred to as "dominant" (0) or "recessive" (1). The SOF field consists of one dominant bit. All network nodes waiting to transmit synchronize with the SOF and begin transmitting at the same time. An arbitration scheme determines which of the nodes attempting to transmit will actually control the bus.

Field	Length	Description	
Start of Frame (SOF)	1	Must be dominant	
Identifier – Standard and	11	Unique identifier corresponds to Base ID in Extended Format	
Extended Formats			
Identifier – Extended Format	29	Comprised of 11 bit Base ID and 18 bit Extended ID	
Remote Transmission Re-	1	Dominant in data frames; recessive in remote frames. In Standard	
quest (RTR) - Standard and		Format, the 11 bit identifier is followed by the RTR bit.	
Extended Formats			
Substitute Remote Request	1	Must be recessive. SRR is transmitted in Extended Frames at the po-	
(SRR) – Extended Format		sition of the RTR bit in Standard Frames. In arbitration between	
		standard and extended frames, recessive SRR guarantees the stand-	
		ard message frame prevails.	
IDE – Standard and Ex-	1	Must be recessive for Extended Format; dominant for Standard For-	
tended Frames		mat.	
Reserved r0 - Standard For-	1	Must be dominant	
Reserved r1, r0 – Extended	2	Must be recessive	
Format			
Data Length Code (DLC)	4	Number of data bytes (0–8)	
Data Field	0–8	Length determined by DLC field	
Cyclic Redundancy Check	15		
CRC Delimiter	1	Must be recessive	
Acknowledge (ACK)	1	Transmitter sends recessive; receiver asserts dominant	
ACK Delimiter	1	Must be recessive	
End of Frame (EOF)	7	Must be recessive	

Table 1-1 CAN 2.0B Message Frame

1.5 J1939 Message Format

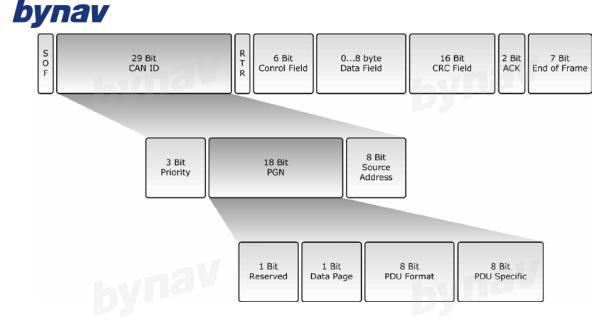


Figure 1-4 J1939 Message Format

With the definition of PDU Format (PF) and PDU Specific (PS) – as shown below - J1939 supports a total of 8672 Parameter Group numbers.

The Parameter Group Number range is divided into two sections:

1. Specific PGNs for peer-to-peer communication (PDU1 Format) Range: 00hex - EFhex (8bits, not including PDU Specific) PDU Specific: Destination Address Number of PGNs: 240 2. Generic PGNs for message broadcasting (PDU2 Format) bynav Range: F000hex – FFFFhex (16bit, including PDU Specific)

PDU Specific: used as Group Extension

Number of PGNs: 4096

The DP bit works as a page selector for the following PDU (Protocol Data Unit) Format (PF) field. It is used to provide extended capacity, i.e. the total number of PGNs is doubled.

DP	PGN Range (hex)	Number of PGNs	SAE or Manufacturer Assigned	Communication
0	000000 - 00EE00	239	SAE	PDU1 = Peer-to-Peer
0	00EF00	1	MF	PDU1 = Peer-to-Peer
0	00F000 - 00FEFF	3840	SAE	PDU2 = Broadcast
0	00FF00 - 00FFFF	256	MF	PDU2 = Broadcast
1	010000 - 01EE00	239	SAE	PDU1 = Peer-to-Peer
1	01EF00	1	MF	PDU1 = Peer-to-Peer
1	01F000 - 01FEFF	3840	SAE	PDU2 = Broadcast
1	01FF00 - 01FFFF	256	MF	PDU2 = Broadcast
0	yna		b	yna

2 Commands and Logs

2.1 Commands

2.1.1 J1939CONFIG

Format: J1939CONFIG node port can_addr

Example: J1939CONFIG NODE1 CAN1 AA

Field	Fiel Type	Description		
1 0	J1939CONFIG header	Command header		
2	node	Identifies the J1939 Node (i.e. CAN NAME)		
3	port	Physical CAN port to use		
		CAN address.		
4	can_addr	The receiver attempts to claim this address		
		(default = 0x0)		

2.1.2 CANCONFIG

Use the CANCONFIG command to configure the hardware parameters of the CAN ports.

Example: CANCONFIG CAN1 ON 250K

Field	Fiel Type	Description		
1	CANCONFIG header	Command header		
2	port	Physical CAN port ID		
3	switch Sets the port to be On or Off the CAN bus			
4	speed	Physical CAN port speed (bits per second)		
4	speed	(default = 250K)		
2.1.3 CCOMCONFIG		bynav		

2.1.3 CCOMCONFIG

Bind a CAN communication port to a J1939 node and specify the CAN protocol, PGN, priority and address for messages transmitted and received over the CCOM port.

Format: CCOMCONFIG port node protocol [pgn [priority [address]]]

Example: CCOMCONFIG ccom1 node1 J1939 61184 7 FE
--

Exal	Example: CCOMCONFIG ccom1 node1 J1939 61184 7 FE				
Field	Field Type	Description			
1	CCOMCONFIG Header	Command header			
2	port	Name of CCOM port			
3	node	The J1939 node to use. This binds a CCOM port to the CAN NAME/address associated with the node.			
4	protocol	CAN transport protocol to use (currently J1939 only)			
5	pgn	Any valid PGN as defined by the J1939 protocol. All messages transmitted over this CCOM port will contain this PGN value. Only messages with this PGN will be received on this CCOM port			
6	priority	Default CAN message priority for transmitted messages. (Priority 0 is the highest priority)			
7	address	00 – FD: Transmit and receive messages to/from this address only FE: Transmit and receive message to/from the address of the first message received FF: Broadcast messages and receive messages from all addresses.			

2.2 Logs

2.2.1 BESTGNSSPOS

Best GNSS position (non INS).

Recommand

LOG [port] BESTGNSSPOS ontime 1 bynav

Example

#BESTGNSSPOSA,COM1,0,92.5,FINESTEER-ING,1692,332119.000,02000000,8505,43521;SOL_COMPUTED,SIN-GLE,51.11635530655,114.03819448382,1064.6283,16.9000,WGS84,1.2612,0.9535,2.7421," ",0.000,0.000,11,11,11,11,0,06,00,03*52d3f7c

Description

Field	Field Type	Description	
1	BESTGNSSPOS header	Log header	
2	Sol Type	Solution status	
3	Pos Type	Position type	
4	Lat	Latitude (°)	
5	Lon	Longitude (°)	
6	Hgt	Height above mean sea level (m)	
7	Undulation	Undulation	
8	Datum ID	Datum ID	
9	Lat σ	Latitude standard deviation	
10	Lon σ	Longitude standard deviation	
11	Hgt σ	Height standard deviation	
12	Stn ID	Base station ID	
13	Diff_age	Differential age (s)	
14	Sol_age	Solution age (s)	
15	#SVs	Number of satellites tracked	
16	#solnL1SVs	L1/E1/B1 satellite number	
17	#solnMultiSVs	Number of satellites with multi frequency signals	
18		Reserved	
19	Ext sol stat	Extended solution status	
20	Galileo and BeiDou sig mask		
21	GPS and GLONASS sig mask		
22	XXX	32-bitCRC parity	
23	[CR][LF]	Message terminator	

Output position, velocity and attitude at the same time

Recommend

LOG [port] INSPVAA ontime 1

Example

#INSPVAA,COM1,0,31.0,FINESTEER-ING,1264,144088.000,02040000,5615,1541;1264,144088.002284950,51.116827527,114.037 738908,401.191547167,354.846489850,108.429407241,10.837482850,1.116219952,3.47605 9035,7.372686190,INS_ALIGNMENT_COMPLETE*af719fd9

Description

Field	Field Type	Description		
1	INSPVA header	Log header		
2	Week	GNSS week		
3	Seconds into week	Seconds of Week		
4	Lat	Latitude		
5	Lon	Longitude		
6	Hgt	Ellipsoid height		
7	North Velocity	North Velocity		
8	East Velocity	East Velocity		
9	Up Velocity	Up Velocity		
10	Roll	Roll		
11	Pitch	Pitch		
12	Azimuth	Azimuth		
13	Status	IMU Status		
14	XXX	32-bitCRC parity		
15	[CR][LF]	Message terminator		

3 Configuring CAN Bus

The Bynav X1 receiver can communicate with other devices in the system, such as computers

and data loggers, using serial, CAN or Ethernet ports, the CAN Bus is available on the COMM2 interface of X1. First connect to the CAN Bus as below:

• Connect push-pull self-locking connector of Communication cable 2 included in the shipping box to COMM2 interface of X1

J1			J2			Bare wire	
PIN1	+5V	Output	PIN1	NC		CAN_H	Input / Output
PIN2	GND_1		PIN2	RS232_TXD2	Output	CAN_L	Input / Output
PIN3	RS232_TXD2	Output	PIN3	RS232_RXD2	Input		
PIN4	RS232_RXD2	Input	PIN4	NC			
PIN5	GND_2		PIN5	GND_1			
PIN6	CAN_H	Input/ Output	PIN6	NC			
PIN7	CAN_L	Input/ Ouput	PIN7	NC			
			PIN8	NC			
			PIN9	+5V	Output		

• Connect the other end Bare Wire of Communication cable 2 to the external CAN Bus

Table 3-1 Pins of Communication Cable 2

Then before CAN communication is available, it is recommended to use serial port to config the CAN port (Refer to *UG005 X1 User Manual* for serial port connection and configuration). The below configurations are needed:

- Use the **J1939CONFIG** command to specify J1939 NAME and desired address.
- Use the **CANCONFIG** command to place the receiver on bus
- Configure CAN Port to receive GNSS Corrections

*Note: refer to UG005 X1 User Manual for other configurations related to INS, such as installation and lever arm calibration etc. This document only introduces CAN communication.

J1939CONFIG NODE1 CAN1 AA CANCONFIG CAN1 ON 250K CCOMCONFIG CCOM2 NODE1 J1939 61184 6 FF INTERFACEMODE CCOM2 RTCM NONE OFF CCOMCONFIG CCOM1 NODE1 J1939 126720 7 FE

<u>bynav</u>

INTERFACEMODE CCOM1 BYNAV BYNAV OFF

LOG CCOM1 INSPVAA ONTIME 0.05

SAVECONFIG

These commonds configure 2 virtual CAN Communication ports (CCOM) on physical CAN interface 1. CCOM2 is used to receive RTCM corrections (PGN 61184=0x0EF00), CCOM1 is used to send position, velocity and attitude information (PGN 126720=0x1EF00).

At last, configurations are saved in receiver.

Disclaimer

This manual provides information about products of Hunan BYNAV Technology Co., Ltd. (hereinafter referred to as BYNAV). It does not transfer any rights or licenses of the company or third parties, including but not limited to patents, copyrights, trademarks, and proprietary rights in any form. At the same time, BYNAV makes no warranties, express or implied, regarding the sale or use of its products, including but not limited to the suitability, marketability or infringement liability for intellectual property rights in copyrights, patents, etc. None of them is guaranteed. BYNAV is exempt from liability for problems arising from connection or operation that are not required by the manual. BYNAV may modify product specifications and descriptions without prior notice if necessary.

Certain design deficiencies or inadequacies that may exist in products may be improved by version iterations and may result in differences between the product and published specifications. The latest product specifications are available upon request.

© Copyright 2013-2020 Hunan BYNAV Technology Co., Ltd. All rights reserved.

bynav

HUNAN BYNAV TECHNOLOGY CO.,LTD Add.: CEC Software Park Building 12, Jianshan Road, Hi-tech Dist., Changsha 410205, China Tel: +86-731-85058117 mail: sales@bynav.com